If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10u^2-5u-14=0
a = 10; b = -5; c = -14;
Δ = b2-4ac
Δ = -52-4·10·(-14)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3\sqrt{65}}{2*10}=\frac{5-3\sqrt{65}}{20} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3\sqrt{65}}{2*10}=\frac{5+3\sqrt{65}}{20} $
| 17y+2y-14y+3y=16 | | 2c+3c−4=5c−42 | | 5u-4u=7 | | 2(2t-5)=-5(5-t) | | 3q+12=15 | | 18s-9s+10=-8 | | 12x−3−5x=9+7x−62 | | 18s-9s-10=-8 | | 10r-3r-2r+1=16 | | 6x–21=-201 | | 2c+c-2c-1=4 | | (3+2x)x=160 | | x/35=5/14 | | −12x=−84 | | 2.5/x=36/1.8 | | 50=44x2-11 | | 12z-7z-2=18 | | 11y+9y-6=14 | | (y+3)^2+5=68 | | n/6=15/18=n | | 26.40+8m=257.60 | | $26.40+8m=257.60 | | -20b-3b+13b-20=-10 | | 5=k(-1/2) | | 8v+2v-4v+3=15 | | 2x+6+4x+2/2=5x-20(2) | | 8a-7a-1=7 | | 44x2=x | | -19+8x=5(x-8) | | 5z+2z+4z-9z+3z=15 | | 1/5(y+6)+5=1/3(5y-2)-21 | | 6=15+2p |